A Multi-Scale Geometric Flow for Seg- menting Vasculature in MRI: Theory and Validation
نویسنده
چکیده
Often in neurosurgical planning a dual echo acquisition is performed that yields proton density (PD) and T2-weighted images to evaluate edema near a tumor or lesion. The development of vessel segmentation algorithms for PD images is of general interest since this type of acquisition is widespread and is entirely noninvasive. Whereas vessels are signaled by black blood contrast in such images, extracting them is a challenge because other anatomical structures also yield similar contrasts at their boundaries. In this thesis we present a novel multi-scale geometric flow for segmenting vasculature from PD images which can also be applied to the easier cases of MR angiography data or Gadolinium enhanced MRI. The key idea is to first apply Frangi’s vesselness measure [Frangi et al. (1998)] to find putative centerlines of tubular structures along with their estimated radii. This multi-scale measure is then distributed to create a vector field which is orthogonal to vessel boundaries so that the flux maximizing flow algorithm of Vasilevskiy and Siddiqi (2002) can be applied to recover them. We carry out a qualitative validation of the approach on PD, MR angiography and Gadolinium enhanced MRI volumes and suggest a new way to visualize the segmentations in 2D with masked projections. We also validate the approach quantitatively on a data set consisting of PD, phase contrast (PC) angiography and time of flight (TOF) angiography volumes, all obtained for the same subject. A significant finding is that over 80% of the vasculature recovered in the angiographic data sets is also recovered from the PD volume. Furthermore, over 25% of the vasculature recovered from the PD volume is not detectable in the TOF angiographic data. Thus, the technique can be used not only to improve upon results obtained from angiographic data but also as an alternative when such data is not available.
منابع مشابه
Geometric Flows for Segmenting Vasculature in MRI: Theory and Validation
Often in neurosurgical planning a dual spin echo acquisition is performed that yields proton density (PD) and T2-weighted images to evaluate edema near a tumor or lesion. The development of vessel segmentation algorithms for PD images is of general interest since this type of acquisition is widespread and is entirely noninvasive. Whereas vessels are signaled by black blood contrast in such imag...
متن کاملA Multi-scale Geometric Flow for Segmenting Vasculature in MRI
Often in neurosurgical planning a dual echo acquisition is performed that yields proton density (PD) and T2-weighted images to evaluate edema near a tumour or lesion. The development of vessel segmentation algorithms for PD images is of general interest since this type of acquisition is widespread and is entirely noninvasive. Whereas vessels are signaled by black blood contrast in such images, ...
متن کاملA geometric flow for segmenting vasculature in proton-density weighted MRI
Modern neurosurgery takes advantage of magnetic resonance images (MRI) of a patient's cerebral anatomy and vasculature for planning before surgery and guidance during the procedure. Dual echo acquisitions are often performed that yield proton-density (PD) and T2-weighted images to evaluate edema near a tumor or lesion. In this paper we develop a novel geometric flow for segmenting vasculature i...
متن کاملDevelopment and Validation of a Parenting Styles Scale based on Glasser\'s Choice Theory
The present study set out to develop and validate a parenting styles questionnaire based on Glasser’s choice theory. The design of this quantitative research was correlational. The statistical population of the study was comprised of all parents of 7- to 18-year-old students in District 6 of Tehran in 2018. The drawn sample (N= 360) was selected by random multi-stage cluster sampling method. At...
متن کاملAssessment of Reproducibility of Geometric Distortion in MRI using Phantom Measurements
Introduction: Image distortion is one of the major problems of magnetic resonance imaging (MRI) for use in 3DMRI, velocity MRI, FMRI and radiotherapy treatment planning (RTTP). It is widely known that the most obvious effect of the inhomogenity of the magnetic fields and the nonlinearity of the gradient is the Geometric Distortion of MR tomograms. In this study, the...
متن کامل